
Cooling Down Ceph
Exploration and Evaluation of Cold Storage Techniques



Cold Storage 
Ceph 

Cooling Down Ceph 
Object Stubs 

Striper Prefix Hashing



– IDC Technology Assessment: Cold Storage Is Hot Again - Finding the 
Frost Point (2013)

“Cold storage is an operational mode or a 
method operation of a data storage device or 

system for inactive data where an explicit 
trade-off is made, resulting in data retrieval 

response times beyond what may be 
considered normally acceptable to online or 

production applications in order to archive 
significant capital and operational savings” 

3



• Facebook photos [1]:  
82% reads to 8% stored data 

• Scientific data system [2]:  
50% reads to 5% stored data

[1] T. P. Morgan. Facebook Rolls Out New Web and Database Server Designs. http://
www.theregister.co.uk/2013/01/17/open_compute _facebook_servers/, 2013 


[2] M. Grawinkel, L. Nagel, M. Mäsker, F. Padua, A. Brinkmann, and L. Sorth. Analysis of the ECMW 
Storage Landscape. Proc. of the 13th USENIX Conference on File and Storage Technologies (FAST), 
2015 4





• Distributed storage system 

• No single point of failure 

• Horizontal scaling 

• Run on commodity hardware

6



7



OSD

MON

MON

MON

OSD

OSD

OSD

Client

8



OSD

MON

MON

MON

OSD

OSD

OSD

Client

Monitor

• Keeps the Cluster Map 

• Distributed Consensus 

• Not in data path

9



OSD

MON

MON

MON

OSD

OSD

OSD

Client

Client

• Computes placement based 
on Cluster Map 

• Directly accesses OSDs and 
MONs

10



OSD

MON

MON

MON

OSD

OSD

OSD

Client

OSD
• Stores Objects 

• Manages replication 

• Placement 

• OSD ~ Disk 

• Backends 

• Filesystem 

• Key/Value Store 

• Ethernet drives

11



Pool

OSDOSD

PG

PG

obj

obj obj

obj

12



Pool

OSDOSD

PG

PG

obj

obj obj

obj

Pool
• OSDs 

• Buckets 

• Type 

• Rack, Server, Disk, … 

• Type 

• Replicated 

• Erasure Coded

13



Pool

OSDOSD

PG

PG

obj

obj obj

obj

Object

• Data 

• 4 MiB 

• Name 

• Xattrs 

• Object Map

14



Pool

OSDOSD

PG

PG

obj

obj obj

obj

Placement Groups

• Abstraction for placement 
computation 

• ~ 100 per OSD

15



Placement

Cluster MapHash

Object

PG

PG

OSD OSD OSD OSD

CRUSH

16



Cooling Down Ceph



• Ceph’s Cold Storage 
Features 

• Cache Tiering 

• Erasure Coding 

• Metadata-aware clients 

• Semantic Pool Selection 

• Metadata for Later 

• Placement 

• Striper Prefix Hashing 

• Extra Placement 
Information 

• Redirection and Stubbing 

• Object Redirects 

• Object Stubs 

• Object Store 

• Backend to Archive 
System 

• Journal Cache

18



• Ceph’s Cold Storage 
Features 

• Cache Tiering 

• Erasure Coding 

• Metadata-aware clients 

• Semantic Pool Selection 

• Metadata for Later 

• Placement 

• Striper Prefix Hashing

• Extra Placement 
Information 

• Redirection and Stubbing 

• Object Redirects 

• Object Stubs

• Object Store 

• Backend to Archive 
System 

• Journal Cache

19



Object Stubs

OSD
obj obj stub

obj stub obj

OSD
obj obj

Archive System

20



Implementation
• As part of the OSD 

• Transparent to the clients 

• New RADOS Operations 

• Stub 

• Unstub 

• Implicit unstub

21



New RADOS Ops:  
Stub, Unstub

OSD
obj obj

obj objobj

stub
Stub Server

obj

XAttrs

  - URL

OUT

RM

obj
OSD

obj obj

obj objobj

stub
Stub Server

obj

XAttrs

  - URL

IN

SET

22



UNSTUB

Get Xattr 
"stub_uri"

HTTP GET
url

HTTP DELETE
url

WRITEFULL
object

RMXATTR
"stub_uri"

STUB

TRUNCATE 
0

SETXATTR
"stub_uri" url

Read Object

HTTP PUT

Implementation:  
Stub, Unstub

23



Implicit Unstub

• Scan operation lists for ops that need data 

• Prepend Unstub



Benefits

• Supports links to external storage systems 

• Stubbed Snapshots => Backup

25



Striper Prefix Hashing

File

OSD

File

OSD
OSD
OSD
OSD

26



Implementation

C
S O U R C E C O D E : S T R I P E R P R E F I X H A S H I N G

The key change introduced by Striper Prefix Hashing is in the pg_pool_t::

hash_key method. It is called by OSDMap::object_locator_to_pg, which
converts an object ID (object_t oid) and object locator (object_locator_t
loc, contains the pool ID) to a placement group (pg_t pg).

Full source code of the implementation, including the simulator, are pub-
lished on github1. Listing C.1 shows the original implementation; Listing
C.2 shows the implementation with Striper Prefix Hashing.

Listing C.1: Original hash_key implementation

uint32_t pg_pool_t::hash_key(const string& key,

const string& ns) const

{

string n = make_hash_str(key, ns);

return ceph_str_hash(object_hash, n.c_str(), n.length());

} ⇧
The changed method cuts off the object’s name at the first dot found in

the string inkey, which happens to be the sequence number part for object
names generated by the Ceph Striper.

Listing C.2: Changed hash_key implementation

uint32_t pg_pool_t::hash_key(const string& inkey,

const string& ns) const

{

string key(inkey);

if (flags & FLAG_HASHPSONLYPREFIX) {

string::size_type n = inkey.find(".");

if (n != string::npos) {

key = inkey.substr(0, n) ;

}

}

string n = make_hash_str(key, ns);

return ceph_str_hash(object_hash, n.c_str(), n.length());

} ⇧

1 https://github.com/irq0/ceph/tree/ps_hash_prefix

66

C
S O U R C E C O D E : S T R I P E R P R E F I X H A S H I N G

The key change introduced by Striper Prefix Hashing is in the pg_pool_t::

hash_key method. It is called by OSDMap::object_locator_to_pg, which
converts an object ID (object_t oid) and object locator (object_locator_t
loc, contains the pool ID) to a placement group (pg_t pg).

Full source code of the implementation, including the simulator, are pub-
lished on github1. Listing C.1 shows the original implementation; Listing
C.2 shows the implementation with Striper Prefix Hashing.

Listing C.1: Original hash_key implementation

uint32_t pg_pool_t::hash_key(const string& key,

const string& ns) const

{

string n = make_hash_str(key, ns);

return ceph_str_hash(object_hash, n.c_str(), n.length());

} ⇧
The changed method cuts off the object’s name at the first dot found in

the string inkey, which happens to be the sequence number part for object
names generated by the Ceph Striper.

Listing C.2: Changed hash_key implementation

uint32_t pg_pool_t::hash_key(const string& inkey,

const string& ns) const

{

string key(inkey);

if (flags & FLAG_HASHPSONLYPREFIX) {

string::size_type n = inkey.find(".");

if (n != string::npos) {

key = inkey.substr(0, n) ;

}

}

string n = make_hash_str(key, ns);

return ceph_str_hash(object_hash, n.c_str(), n.length());

} ⇧

1 https://github.com/irq0/ceph/tree/ps_hash_prefix

66

27



Methodology
• ECMWF ECFS HPSS dump [1] 

• 137 million files 

• 14.8 PiB 

• 10% random sample 

• Simulator

28

[1] M. Grawinkel, L. Nagel, M. Mäsker, F. Padua, A. Brinkmann, and L. 
Sorth. Analysis of the ECMW Storage Landscape. Proc. of the 13th 
USENIX Conference on File and Storage Technologies (FAST), 2015 



Simulator

• 600 OSDs 

• 38400 PGs 

• 45 minutes on 32 cores

5.2 striper prefix hashes 36

Table 5.2: Benchmark settings

Hash Algorithm Prefix Hash Enabled?

1 RJenkins No

2 Linux No

3 RJenkins Yes

4 Linux Yes

5.2.2.3 Simulator

Simulating Ceph’s placement decision by running a whole Ceph stack
with Ceph FS was quickly found to be infeasible in terms of run time.
For this test OSDs, MONs and MDS components ran on a single server.
OSDs ran on top of a FUSE overlay filesystem called blackholefs2, spe-
cially designed to intercept writes.

A special simulator running only the bare minimum of Ceph and sup-
port infrastructure was used instead. To exploit multiple CPUs the simu-
lator was designed to run multiple instances in parallel. Standard UNIX
tools fed the compressed workload into 32 parallel simulator instances in a
round robin fashion. The simulator ran on a 32 Core Intel(R) Xeon(R) CPU
E5-2650 with 2.00GHz. Each setting took about 45 minutes to complete.

A run with the full workload and 6000 OSDs takes in comparison more
than 3 days to finish. The long running time is the main reason for simu-
lating only on a 10% sample and with 600 OSDs.

The simulator expects input on standard input with filename and object
size separated by spaces. For each line of input it computes the placement
data and outputs a line containing the following information:

• Filename

• Size

• Number of striper extents

• Number of object names generated by the striper

• Number of unique placement groups assigned to the file

• Number of OSDs assigned to the file

• Number of unique primary OSDs assigned to the file

• JSON encoded data:

– List of Object IDs

– List of Placement Groups

– List of OSDs
2 https://github.com/irq0/blackholefs

29



Workload 
ECFS HPSS 10% random sample

5.2 striper prefix hashes 35

Table 5.1: ECFS HPSS Dump Properties

Property Value Unit

Total #files 14,950,112

Total used capacity 1.595 PiB

Max file size 32 GiB

Size of Objects 6 4MiB 5.495 PiB

Size of Objects > 4MiB 1.590 PiB

0-
4M

iB

4M
iB

-8
M
iB

8M
iB

-1
6M

iB

16
M
iB

-3
2M

iB

32
M
iB

-6
4M

iB

64
M
iB

-1
28

M
iB

12
8M

iB
-2

56
M
iB

25
6M

iB
-5

12
M
iB

51
2M

iB
-1

G
iB

1G
iB

-2
G
iB

2G
iB

-4
G
iB

4G
iB

-8
G
iB

8G
iB

-1
6G

iB

16
G
iB

-3
2G

iB

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000  

   
   

   
#F

ile
s

47
.0

5

7.
98 10

.5
3

6.
97

6.
91

6.
25

6.
00

3.
82

2.
22

1.
41

0.
47

0.
29

0.
09 0.
01

Figure 5.2: Histogram: File size distribution. Each bucket inclusive e.g 0 < x 6
4MiB

5.2.2.2 Settings

Based on the storage requirement of approximately 1.6PiB the simulator
uses a Ceph pool with 600 OSDs with three replicas. While enabled, repli-
cation is not part of the evaluation. Ceph maps OSDs to objects similar for
replicas and thus the data for replicas doesn’t show anything more than
the data without replicas. The number of placement groups was 38400, the
default for 600 OSDs.

The simulator uses a pre-created OSD map with a flat OSD layout with-
out any failure domain configured. The simulator ran four times using the
same OSD map, but with different hash and Prefix Hash settings shown
in Table 5.2.

30

Total #files ~ 15 mil

Total used 
capacity 1.595 PiB

Max file size 32 GiB

Size of Objects 
≤ 4 MiB 5.495 GiB

Size of Objects 
> 4 MiB 1.590 PiB



Distinct OSDs per File 
or: Does it work?

5.2 striper prefix hashes 37

5.2.3 Expectations

First and foremost the simulator must show that with the Striper Prefix
Hashing enabled each input file should only have one unique OSD and
PG assigned to it. Without Striper Prefix Hashing the results should show
much higher values; Ceph tries to minimize the amount of duplicated
OSDs per file.

The second most important result would be that Striper Prefix Hashing
does not cause dramatic imbalance between object and storage per OSD.

5.2.4 Results

The following results are a snapshot composed of the data obtained. Ap-
pendix A contains more detailed data and values for the plots shown here.

5.2.4.1 Distinct OSDs per File

Table 5.3 shows statistics for the number of distinct primary OSDs of all
files in the workload that are larger than 4MiB, because the number of
OSDs per file is always 1 for files with only one object.

Table 5.3: Distinct primary OSDs per file for files larger than 4MiB

Statistic RJenkins Linux dcache RJenkins+Prefix Linux+Prefix

Min. 1 1 1 1

Q
1

3 3 1 1

Median 9 9 1 1

Q
3

35 35 1 1

Max. 600 600 1 1

As evident from the table the Striper Prefix Hash runs result in 1 OSD
per file.

5.2.4.2 Duplicates in Primary OSD List

Data in table 5.3 indicated that RJenkins’ and Linux’ performance is similar
in terms of duplicated OSDs per file. Figure 5.3 shows this data grouped
by file sizes. It omits sizes less than 64MiB as their result’s 1st, 2nd, and
3rd quartile are 0. As the groups become bigger, more and more OSDs are
necessary to store a file. At a file size of 2.34GiB (600 OSDs) duplicates
become unavoidable.

But as the data suggests, the performance of the two hash algorithms is
similar in terms of duplicates per file.

31



Balance

5.2 striper prefix hashes 39

5.2.4.3 Balance

In an ideal balanced Ceph cluster all OSDs store the same amount of data
and objects. Figure 5.4 and 5.5 illustrate the number of objects per primary
OSD and the size of data per primary OSD respectively. Both measures
are similar, but the size plot also takes objects not filled to the maximum
into account.

300.0k

400.0k

500.0k

600.0k

700.0k

800.0k

900.0k

1.0M

1.1M

1.2M

R
Je

nk
in

s

Li
nu

x 
dc

ac
he

R
Je

nk
in

s+
P

re
fix

Li
nu

x+
P

re
fix

#O
bj

ec
ts

Figure 5.4: Number of object per OSD

Figure 5.5: Size of data per OSD

Both plots show that the OSDs are well-balanced, regardless of hash
choice. RJenkins, Linux and RJenkins+Prefix result in similar OSD utiliza-
tion, while Linux+Prefix shows a lower minimum and higher maximum.

5.2 striper prefix hashes 39

5.2.4.3 Balance

In an ideal balanced Ceph cluster all OSDs store the same amount of data
and objects. Figure 5.4 and 5.5 illustrate the number of objects per primary
OSD and the size of data per primary OSD respectively. Both measures
are similar, but the size plot also takes objects not filled to the maximum
into account.

Figure 5.4: Number of object per OSD

2.0TiB
2.2TiB
2.4TiB
2.6TiB
2.8TiB
3.0TiB
3.2TiB
3.4TiB
3.6TiB
3.8TiB
4.0TiB

R
Je

nk
in

s

Li
nu

x 
dc

ac
he

R
Je

nk
in

s+
P

re
fix

Li
nu

x+
P

re
fix

C
om

bi
ne

d 
ob

je
ct

 s
iz

e 
/ B

yt
e

Figure 5.5: Size of data per OSD

Both plots show that the OSDs are well-balanced, regardless of hash
choice. RJenkins, Linux and RJenkins+Prefix result in similar OSD utiliza-
tion, while Linux+Prefix shows a lower minimum and higher maximum.

32



Racap
• Ceph 

• Cooling Down Ceph 

• Implementation and Evaluation 

• Object Stubs 

• Striper Prefix Hashing

33

File

OSD

OSD
obj obj stub

obj stub obj

OSD
obj obj

Archive System



Cooling Down Ceph
Exploration and Evaluation of Cold Storage Techniques



Bonus Slides



Striper
File, Block Device Image, etc.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8

8

0

2

4

1

3

5

6

8

7

0 1 2 3 4

Blocks

Stripes

Objects

0 1 2 3

Object Set

36



Implicit Unstub Ops

B.5 operations that need object data 59

Table B.1: Ceph OSD operations

OSD Operation Needs
Object
Data?

OSD Operation Needs
Object
Data?

read X cache-flush X
stat cache-evict X
mapext X cache-try-flush X
masktrunc X tmap2omap X
sparse-read X set-alloc-hint

notify redirect

notify-ack unredirect

assert-version clonerange X
list-watchers assert-src-version

list-snaps src-cmpxattr

sync_read X getxattr

write X getxattrs

writefull X cmpxattr

truncate X setxattr

zero X setxattrs

delete resetxattrs

append X rmxattr

startsync pull X
settrunc push X
trimtrunc X balance-reads X
tmapup X unbalance-reads X
tmapput X scrub X
tmapget X scrub-reserve X
create X scrub-unreserve X
rollback X scrub-stop X
watch scrub-map X
omap-get-keys wrlock

omap-get-vals wrunlock

omap-get-header rdlock

omap-get-vals-by-keys rdunlock

omap-set-vals uplock

Continued on next page

B.5 operations that need object data 59

Table B.1: Ceph OSD operations

OSD Operation Needs
Object
Data?

OSD Operation Needs
Object
Data?

read X cache-flush X
stat cache-evict X
mapext X cache-try-flush X
masktrunc X tmap2omap X
sparse-read X set-alloc-hint

notify redirect

notify-ack unredirect

assert-version clonerange X
list-watchers assert-src-version

list-snaps src-cmpxattr

sync_read X getxattr

write X getxattrs

writefull X cmpxattr

truncate X setxattr

zero X setxattrs

delete resetxattrs

append X rmxattr

startsync pull X
settrunc push X
trimtrunc X balance-reads X
tmapup X unbalance-reads X
tmapput X scrub X
tmapget X scrub-reserve X
create X scrub-unreserve X
rollback X scrub-stop X
watch scrub-map X
omap-get-keys wrlock

omap-get-vals wrunlock

omap-get-header rdlock

omap-get-vals-by-keys rdunlock

omap-set-vals uplock

Continued on next page

B.6 stub server 60

Table B.1: Ceph OSD operations

OSD Operation Needs
Object
Data?

OSD Operation Needs
Object
Data?

omap-set-header dnlock

omap-clear call

omap-rm-keys pgls

omap-cmp pgls-filter

copy-from X pg-hitset-ls

copy-get-classic X pg-hitset-get

undirty pgnls

isdirty pgnqls-filter

copy-get X

b.6 stub server

The server used in the proof of concept is a simple HTTP server supporting
the following operations:

put /objects/$oid Add object

get /objects/$oid Get object

delete /objects/$oid Delete object

Listing B.5 shows the full implementation in Python. The code is not
part of the Object Stub patch, but rather part of a separate Object Stub
Tools repository2.

Listing B.5: Python stub server

import os

from flask import Flask, request, redirect, url_for

from werkzeug import secure_filename

UPLOAD_FOLDER = ’/tmp’

app = Flask(__name__)

app.config[’UPLOAD_FOLDER’] = UPLOAD_FOLDER

@app.route(’/objects/<path:oid>’, methods=[’PUT’])

def upload(oid):

fn = os.path.join(app.config["UPLOAD_FOLDER"],

2 https://github.com/irq0/ceph_osd-stub_tools



0.0 

5.0 

10.0 

15.0 

20.0 

25.0 

30.0 

64
M
iB

-1
28

M
iB

12
8M

iB
-2

56
M
iB

25
6M

iB
-5

12
M
iB

#D
up

lic
at

e 
O

S
D

s 
/ F

ile

RJenkins
Linux

0.0 

100.0 

200.0 

300.0 

400.0 

500.0 

600.0 

51
2M

iB
-1

G
iB

1G
iB

-2
G
iB

2G
iB

-4
G
iB

0.0 

1.0k

2.0k

3.0k

4.0k

5.0k

6.0k

7.0k

8.0k

4G
iB

-8
G
iB

8G
iB

-1
6G

iB

16
G
iB

-3
2G

iB


